Hybridization of Existing Wind/Solar PV Plants

Mr. Ajit Pandit
Director, Idam Infrastructure Advisory Pvt. Ltd.

(22nd September, 2016)
Agenda

- Need for development of Wind-Solar Hybrids
- Development of framework for Wind-Solar Hybrids
- Key challenges and potential intervention measures
- Implementation strategy
- MNRE Draft RE Hybrid Policy: Key Suggestions
- Way Forward
Need for Development of Wind-Solar Hybrids

Improved Land Usage
- Combined land requirement for wind and solar to be lower than norm of 2.5 Ha/MW

Shared Evacuation Infrastructure
- Optimal planning and better utilization of upstream evacuation facilities
 - Excess gen. capacity of ~ 30 to 40 percent at Pooling S/S
 - ROW optimization

Shared Operations
- Benefits of shared operations and
- Shared infrastructure (roads, manpower, security, metering)

Consistent Power Generation
- Wind and Solar Generation to complement with improved profile
 - Better management of variability
Design considerations for Shared Evacuation Infra.
Evacuation Planning Criteria

• MNRE Draft Wind-Solar Hybrid Policy, (June 2016)
 • The hybrid power injected into the grid will not be more than the transmission capacity/grid connectivity allowed/sanctioned for existing wind/solar project. This will ensure that no augmentation of transmission capacity is required. (ref. MNRE draft Hybrid Policy Clause 5.2 (i))

• CEA (Technical Standards for Construction of Electrical Plants and Electric Lines) Regulations, 2010, outline conditions for design of Substation Capacity and Transmission Lines

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Voltage (kV)</th>
<th>Line Loading Capacity (MW)</th>
<th>Sub-station Capacity (MVA) as per CEA Technical Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400</td>
<td>450</td>
<td>1500 MVA</td>
</tr>
<tr>
<td>2</td>
<td>220</td>
<td>250</td>
<td>500 MVA</td>
</tr>
<tr>
<td>3</td>
<td>132</td>
<td>90</td>
<td>150 MVA</td>
</tr>
<tr>
<td>4</td>
<td>66</td>
<td>27</td>
<td>75 MVA</td>
</tr>
</tbody>
</table>
CEA Transmission Planning Manual for Wind/Solar
Ampacity based Line Loading and Capacity of Substations

CEA’s Transmission Planning Criteria (Manual, 2013)

- CEA has published Manual for Transmission Planning Criteria, 2013 which outlines special dispensation and additional criteria for Wind and Solar Projects.
- The capacity factor for the purpose of maximum injection to plan the evacuation system, both for immediate connectivity with the ISTS/Intra-STS and for onward transmission requirement, may be taken as under:

<table>
<thead>
<tr>
<th>Voltage level/Aggregation level</th>
<th>132kV / Individual wind/solar farm</th>
<th>220kV</th>
<th>400kV</th>
<th>State (as a whole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Factor (%)</td>
<td>80 %</td>
<td>75 %</td>
<td>70 %</td>
<td>60 %</td>
</tr>
</tbody>
</table>

- The ‘N-1’ criteria may not be applied to the immediate connectivity of wind/solar farms with the ISTS/Intra-STS grid i.e. the line connecting the farm to the grid and the step-up transformers at the grid station.
- As the generation of energy at a wind farm is possible only with the prevalence of wind, the thermal line loading limit of the lines connecting the wind machine(s)/farm to the nearest grid point may be assessed considering 12 km/hour wind speed.

- Additional Wind & Solar Generation capacity at Existing Grid S/S can be absorbed without significant augmentation requirement.
India is bestowed with vast renewable (wind-solar) potential.

No utility scale hybrid project (wind-solar) has been implemented across the country.

Comprehensive Study for Development of Suitable Framework for promotion of hybrid projects was necessary.

Study initiated by **PACE-D TA Program** to comprehensively cover technical, commercial and regulatory aspects of wind-solar hybrid development in **Karnataka & Rajasthan**:

- Identifying challenges for deployment of RE hybrids in the states.
- Formulating suitable regulatory intervention measures and policy framework necessary to address the challenges.
- Enabling framework for existing wind/solar power developers in the states to explore options for the development of Brownfield and Greenfield RE hybrid projects in the states.
Solar and Wind Resource: Potential Mapping for Karnataka

Mapping of Solar and Wind Resource Potential Suggests Ideal Location for Wind-Solar RE Hybrids: Chitradurga, Bagalkot, Gadag and Belgaum
Solar and Wind Resource: Potential Mapping for Rajasthan

Mapping of Solar and Wind Resource Potential Suggests Ideal Location for Wind-Solar RE Hybrids: Jaiselmer, Barmer, Jodhpur, Bikaner
Simulation of Energy Mix: Wind-Solar Generation

Sample Data for Wind Power Project:
- 3 Days for 3 Months
- June to August
- Time-Blocks

Sample Data for Solar Power Project:
- 3 Days for 3 Months (Same Sample Days)
- June to August
- Time Blocks

Boundary Conditions:
- Evacuation Capacity
- Minimizing Generation Curtailment

Wind Generation Profiling

Solar Generation Profiling

Extrapolation for 100 MW Wind Power Project

Simulation of Wind-Solar Generation at Pooling S/S

Extrapolation for Solar Power Plant Capacities (20/30/35/40/45 MW)
Simulation Results:
Wind-Solar Generation Scenario

Utilization of PE system up to 30 to 40 percent of existing wind capacity is possible without constraint.
Avoided Cost of Evacuation Infrastructure

Estimated Benefit for the Utilities

<table>
<thead>
<tr>
<th>No. of districts with predominant RE-hybrid potential in Karnataka</th>
<th>Chitradurga, Bagalkot, Gadag and Belgaum</th>
<th>No. of districts with predominant RE hybrid potential in Rajasthan</th>
<th>Jaisalmer, Barmer, Jodhpur and Bikaner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed capacity of wind farms in each such districts</td>
<td>Chitradurga</td>
<td>Bagalkot</td>
<td>Gadag</td>
</tr>
<tr>
<td></td>
<td>726 MW</td>
<td>~ 50 MW</td>
<td>716 MW</td>
</tr>
<tr>
<td>Solar capacity that could be added to existing wind farms without PE infrastructure augmentation</td>
<td>30 percent of 1,800 MW = 540 MW (considering additional 30 percent of existing wind installed capacity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoided cost for KPTCL for setting up of evacuation infrastructure of 540 MW (including transmission substation and line cost for 400 kV or 220 kV level)</td>
<td>INR 540 Crore to INR 650 Crore (Considering expected per MW cost of INR 1 Cr to INR 1.2 Cr for PE infrastructure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installed capacity of wind farms in all Districts</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Considering 30 percent of solar capacity that could be added to these wind farms without power evacuation infrastructure augmentation</td>
<td>3,355 MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 percent of 3,355 MW = ~ 1,000 MW (considering additional 30 percent of existing wind installed capacity)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoided cost for Rajasthan utility for setting up of evacuation infrastructure of 1,000 MW (including transmission s/s and line cost for 400 kV or 220 kV level)</td>
<td>INR 1,000 Crore to INR 1,200 Crore (Considering expected per MW cost of INR 1 Cr to INR 1.2 Cr for PE infrastructure)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Challenges in Wind-Solar Hybrids

Technical Challenges

- **Interconnection Point & Metering Point**
 - Different practices for wind & solar being followed in the state.
 - Clear demarcation of roles (STU/Developer)
- **Transmission and Evacuation Arrangement**
 - Planning Codes/Standards to recognize benefits of hybrid operations (30 to 40%)
- **Metering and Energy Accounting**
 - Need for modification of procedures for Joint Meter Reading and Loss apportionment
- **Forecasting and Scheduling Regime**
 - Rules for F&S and deviation settlement for wind and solar to aligned for hybrid options.

Commercial Challenges

- **Need for Flexibility of Off-take arrangements**
 - Multiple generators/owners with sale options (TPS/Captive/Sale to DISCOM/inter-state) needs to be enabled.
- **Tariff Treatment**
 - Generic hybrid RE Tariff is not necessary.
 - Composition of share of W:S for hybrid would depend upon site specific aspects.
- **Treatment Under RPO**
 - Need to separately track Solar/Non-Solar RPO
- **Clarity on Extending Fiscal/Financial Benefits under Wind Policy, Solar Policy and Investment Schemes to Hybrid RE**
 - Eligible Hybrid RE project(s)/Capacity, share of W:S
Technical Aspects:
Interconnection & Metering Point...1/2

- Clear demarcation of solar generation and wind power generation is important from the perspective of energy accounting, scheduling requirement and RPO compliance.
- Rules for interconnection, metering arrangement for RE hybrids need to address these requirements.
Technical Aspects:
Interconnection & Metering Point...2/2

<table>
<thead>
<tr>
<th>Existing Practice</th>
<th>Challenges</th>
<th>Recommendations for Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interconnection Point:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➢ Presently grid substation to which the wind project is connected</td>
<td>➢ Existing framework not suitable for hybrid</td>
<td>➢ From perspective of RPO compliance wind and solar need to be separately metered</td>
</tr>
<tr>
<td>Metering Point:</td>
<td>➢ Existing framework considers single metering point for entire wind farm</td>
<td>➢ Interconnection point to be defined as HV side of pooling substation</td>
</tr>
<tr>
<td>➢ Presently grid substation</td>
<td>➢ Single metering point cannot account for wind and solar generation separately for RPO</td>
<td>➢ Metering points to be defined as either feeder level or individual generator level (i.e., Level ‘1’ or ‘2’)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ As a pre-condition, incoming feeders of pooling station to have all solar or all WTGs connected to it</td>
</tr>
</tbody>
</table>
Technical Aspects:
Energy & Loss Accounting

Existing Practice
- JMR conducted at grid substation
- Energy credit on account of individual generator arrived at based on JMR reading and WTG controller data
- Loss apportioning done among WTGs based on JMR reading and WTG controller data

Challenges
- Separate energy credit for solar generators is not possible with no separate feeder metering at pooling station
- Separate loss apportionment for solar generator is not possible

Recommendations for Hybrid
- JMR to be done at HV side as well as at incoming feeder level of the pooling substation
- Additional metering infrastructure to be in place at each incoming feeder level
- Energy accounting and loss apportionment to individual generator to be based on JMR reading at new metering point at pooling substation and the controller reading
Technical Aspects: Transmission & Evacuation

Existing Practice
- Entity for connectivity and planning - STU / Utility
- Responsibility of setting up evacuation facility up to grid S/S – by generator
- Cost of setting up evacuation facility up to grid S/S – by generator

Challenges
- Evacuation infrastructure in RE pockets to be strengthened
- Evacuation infrastructure planning - no specific consideration for RE evacuation
- No mechanism in place for sharing cost of evacuation with Utility

Recommendations for Hybrid
- **Brownfield project:**
 - Upstream evacuation infrastructure need not be upgraded – avoided cost for Utility
- **Greenfield project:**
 - Optimum capacity evacuation substation to be planned depending on wind-solar hybrid potential in the region
- Transmission infrastructure planning to strengthen grid at wind-solar pockets of state
- State level planning code to give priority for grid planning for RE hybrid
- SNA to assess and notify hybrid potential areas to STU to enable timely grid strengthening
Implementing Brownfield Wind Solar Hybrids

Addressing key challenges

Key Challenges

- Ownership of Existing Facilities (Turbines/Modules)
- Modifications to PPA
- Feasibility of evacuation infrastructure and sharing costs
- Exploring Re-powering opportunity
- Issue of land ownership

Brownfield Wind-Solar Hybrid

Need for encouraging suitable Business Model and devising overarching framework for RE Hybrid
Suggestions for Overarching Wind-Solar Hybrid Framework

Project Developers
- Site Identification
- Feasibility Study

Site Identification
- Wind resource assessment
- Solar resource assessment
- Assessment Hybrid options for Site
- Topography study and shadow analysis
- Access and infrastructure

Feasibility Study
- Detailed Design options & configuration
- Options study for Solar PV technology
- Share of (W:S) Hybrid and Energy yield estimation
- Power Evacuation – options study

SNAs
- Implementation Plan

Implementation Plan
- Develop State level Hybrid RE Programs (phase-wise or brownfield/greenfield)
- Milestone linked incentives for SNA
- Utility Benefit Sharing Model
- Devise strategy for selection of Implementation Partner

Govt/SERCs
- Policy & Regulatory Intervention

Policy & Regulatory Intervention
- State Policies to recognize Hybrid RE for land allotment, fiscal & financial benefits
- Modification to Metering Code
- RPO/FIT regulations
- Amendments to Utility processes on Tx Planning, JMR and Energy Accounting

Utility/SNA
- Selection of Implementation Partner

Selection of Implementation Partner
- Utility/SNA Bidding process
- Implementation Agreement with SNA/Utility
- EPC & O&M contracts for Hybrid RE Park
- Model Off-take Agreements
Hybrid (Wind-Solar) Policy - Goal and Scope

- Ambitious target of 10 GW Hybrid has been proposed.
- However, suitable Business Models need to be devised to encourage planning, development, investment and operationalization of RE Hybrid schemes.
- Multiple stakeholders would be involved at each stage – Utility, Developer, Generators, Off-takers: Concerns of all stakeholders need to be addressed.
- Policy need to address all scenarios of Hybrid RE - covering multiple owners, separate owners for wind/solar, multiple off-takers, brownfield/greenfield within RE Hybrid project scheme.
Wind-Solar Hybrid Systems: Eligibility and Scope

• Definition of Hybrid RE and Eligibility conditions need to be clearly defined.

• Optimisation of the benefit of Hybridisation from Utility perspective for Power Evacuation is the key.

• Promoting co-located Hybrid RE systems at level of Pooling S/S would maximise benefit of aggregation and Hybridisation rather than Turbine/Module level.

• Technology for Hybrid, (AC/DC integration) etc. may be left for market to decide. Standards for DC meters would be challenge.

• For Brownfield Hybrid RE, Balance Useful Life should be important determinant.
Draft MNRE RE Hybrid Policy:
Key Suggestions...3/4

Hybridization of Existing Wind-Solar PV Plants: (Brownfield)

• For RE Hybrid, Transmission Capacity should be linked to ‘Ampacity based Thermal Line Loading’ as per CEA planning criteria for wind/solar.

• Existing condition would actually limit Hybrid RE capacity.

• Our studies in Karnataka and Rajasthan suggests the hybridization (upto 30%-40%) is feasible within existing PE capacity.

• Policy should encourage different off-take arrangements with multiple owners for RE Hybrid project scheme.
Draft MNRE RE Hybrid Policy: Key Suggestions...4/4

New Wind-Solar Hybrid Plants: (Greenfield)

• Need for separate determination of ‘Hybrid RE’ Tariff at this stage does not arise.

• Separate off-take arrangement with independent Tariff arrangement(s) for Wind/Solar within Hybrid RE project scheme can co-exist and need to be encouraged.

• The Policy should encourage different off-take arrangements with Multiple Owners for Hybrid RE project scheme.

• Incentive Scheme and/or Grant to Utility and Project Developers to devise Hybrid RE schemes may be put in place.
Way forward

• Model Policy Guidelines for Wind-Solar Hybrid Project Development for:
 • Existing (Brownfield) Wind-Solar Hybrid Projects
 • New (Greenfield) Wind-Solar Hybrid Projects

• Model Regulatory Framework for Wind-Solar Hybrid
 • Modifications for Grid Connectivity, Metering Code and Planning Code.

• Development of Pilot Wind-Solar Hybrid Scheme:
 • Devising Implementation plan in consultation with SNA/State Utility
 • Development of Standard Documentation for Wind-Solar Hybrid projects
Thank You

Contact:
Idam Infrastructure Advisory Private Limited

Ajit Pandit
+(91) 98211 08222
Balawant Joshi
+(91) 98214 21630

Email: contact@idaminfra.com
Web: www.idaminfra.com

Mumbai (Regd. Office):
801, Crystal Plaza,
158, CST Road, Kalina, Santacruz (E),
Mumbai - 400 098
Tel: +(91) 22 4057 0200/ 2665 0711

Delhi:
513-516, 5th Floor, Narain Manzil,
Barakhamba Road,
New Delhi -110001
Tel: +(91) 11 4943 4000

Kolkata:
T2, 8C Millennium City IT Park
DN 62, Sector V, Salt Lake
Kolkata 700091
Tel: +(91) 11 4943 4000

Hyderabad:
House No. 3-51, Flat No. 201
Abhishek Towers (Opp. HAL Gate)
Balanagar, Hyderabad - 500 042
Tel: +91 40 6999 8062