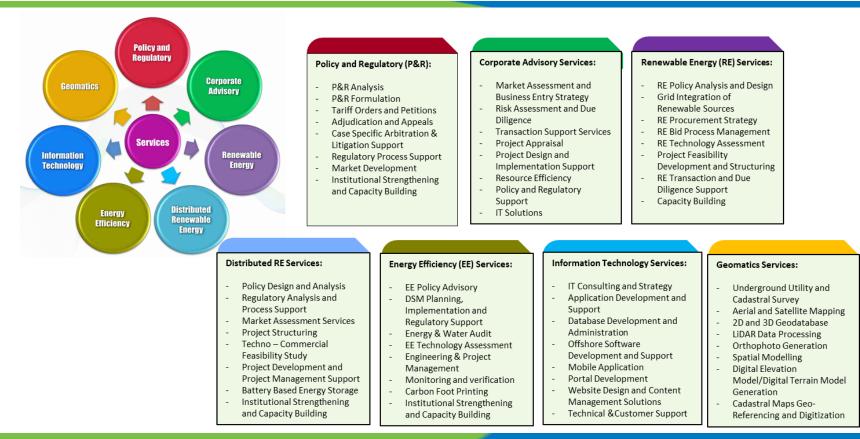


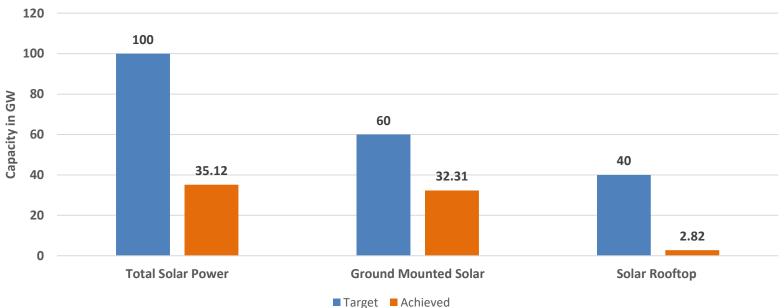
Idam Infrastructure Advisory Pvt. Ltd.

Solar + Storage Systems – Business Models for Large Deployment


Balawant Joshi, Managing Director

Expert Talk on Solar, Storage & Hybrid Development

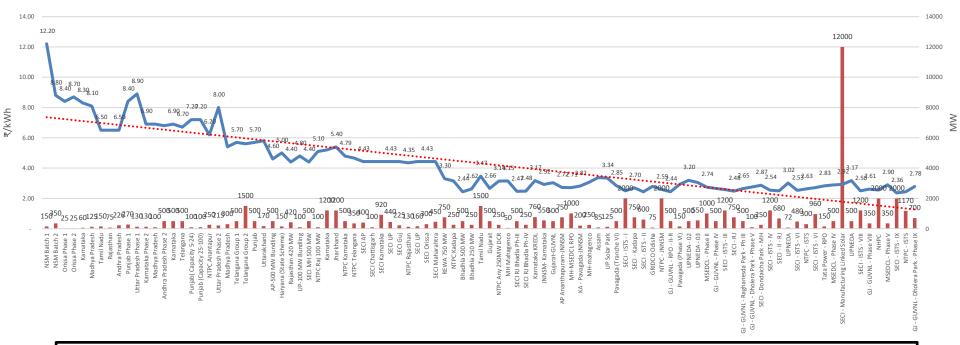
17 September 2020


Idam Infra – Service Offerings

India's ambitious solar target

Target vs Achievement of Solar Installation

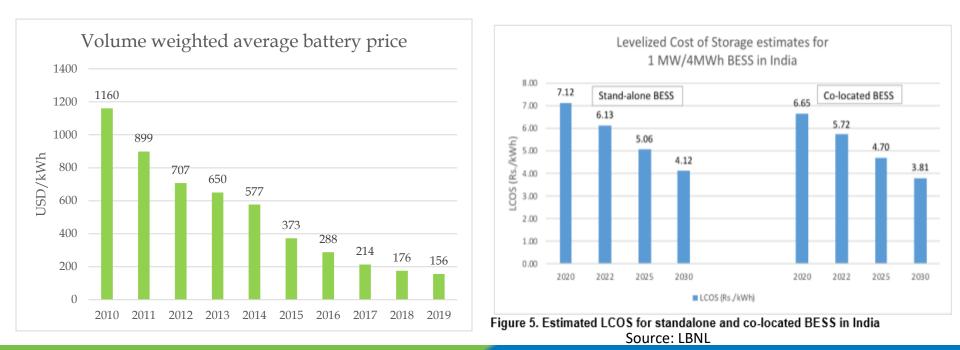
India can't achieve solar target without significant storage capacity



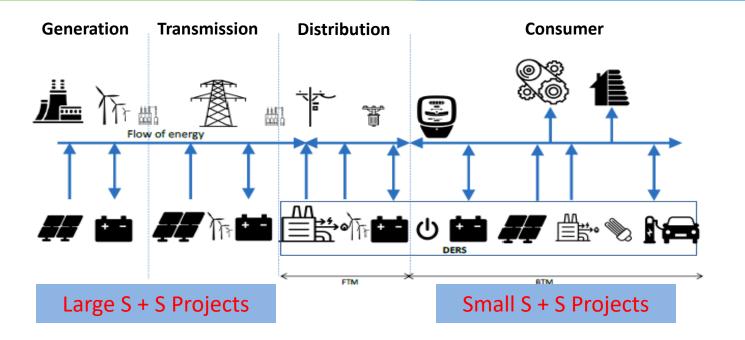
Report Name	Publisher	Report date/ Target Year	Battery Storage need projection	Consideration
Developing a roadmap to a flexible, low-carbon Indian	CPI (with TERI and NREL)	Feb-19/ 2030	60 GW	Considering flexibility provided by Thermal, Hydro (including PSH) and Batteries) and demand projection as done by TERI
electricity system: interim findings	and INKEL)		25 GW	Considering flexibility provided by Thermal, Hydro (including PSH) ,Batteries and Demand Side Management) and demand projection as done by TERI
Energy Storage System:	ISGF (with Mac Arthur	2010 / 2022	67 GWh	At MV/LV level
Roadmap for India : 2019-32	foundation and IESA)	2019 / 2032	142 GWh	At EHV level
Least-Cost Pathways for India's Electric Power Sector	NREL	May-20/2047	237 GW	Considering capacity and demand growth are based on CEA National Electricity Plan and 19th Electric Power Survey (CEA 2018b)
Report On Optimal Generation Capacity Mix For 2029-30	CEA	Jan-20/ 2030	27 GW / 108 GWh	Considering mid term review of NEP-I for installed capacity taking 2021-22 as base year and EPS for Peak load and energy projection.

Reverse Auctions

Tariff trends for Large Scale (50 MW and above) solar projects

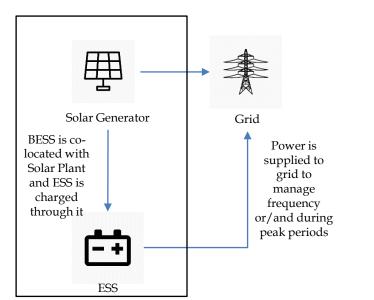


• ~ 30 GW of Solar Capacity has been allotted through Competitive Bidding Process.


• Gradual increase in Solar Capacity over the years shows its acceptance while discovering the lowest Tariff of Rs. 2.44/kwh

Economics of battery storage-Trend

Recent report published by Lawrence-Berkeley National Laboratory shows that the LCOE for standalone BESS could reach Rs. 4.12/kWh by 2030.


Solar Plus Storage along electricity value chain 🖗 Idam

Medium S + S Projects

Solar + Storage Project

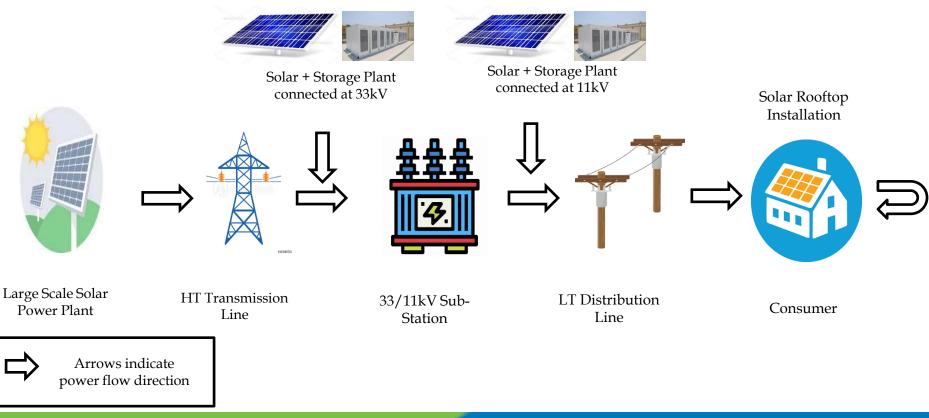
Renewable Energy Plant with co-located Energy Storage System

- Energy Storage System co-located with RE generator can provide firm power to the grid, thus maintaining grid stability
- This can reduce the fluctuation in the grid and help in better management of the frequency
- Energy Storage System co-located with RE generator can also be used to provide power during peak periods
- Utility can get the benefit of firm power from renewables or/and cheaper peak power during peak periods

SECI ISTS VII tender

Particulars	Description		
Capacity Offered	Min: 50 MW; Max. 300 MW Max. allowable to single entity 600 MW	Particulars Power Generation	Description Daily Minimum: 300 MWh
Business Model & PPA tenure	BOO & 25 years	Requirement (for project rated	• Capable of delivering 50MW in any peak hour (limited to 6 hour blocks) scheduled by DISCOM through day
Counter Party	SECI	capacity of 100 MW)	ahead schedulingExcess generation above 300 MWh during peak hours
Project Location	Generation may be co-located/ different locations. ESS has to be co-located with RE	11110	 shall be compensated at off-peak rate Permissible shortfall up-to 15% below minimum energy commitment, accounted monthly, beyond
ESS Capacity	1200 MWh (equal to MW rating of Solar+Wind)	Peak Power Generation	which penalty is appliedPenalty equal to the Peak tariff or tariff paid by
Injection Point	Single or Multiple(s) by separate injection at Pooling point & having separate control		DISCOM to meet the shortfall in supply, whichever is higher
CUF	At-least 40% (annual)		• Any excess generation over and above 10% of declared annual CUF will be purchased by SECI at its discretion
Peak Power Supply	Daily: Min. 6 hours, Max. 8 hours		{without any obligation to do so} at a fixed tariff of 75% of the Off-Peak tariff
Tariff	Two part tariff Off – peak: ₹2.7/kWh Peak: ₹6.12/kWh and ₹6.85/kWh	Excess Generation	In case of energy supply during Peak Hours over and above the mandated energy requirement (300 MWh), and in the event of such power being procured by the
Energy Arbitrage	At discretion of HPD between 0:01 and 5:59 hours ISTS/STU charges such as wheeling etc. in scoope of HPD		Buying Utility, the HPD will be paid energy charges @ Off-Peak Tariff

SECI ISTS RTC Tender



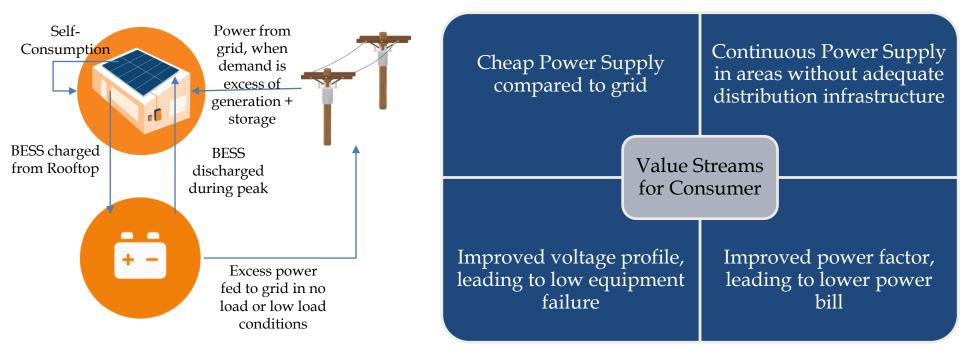
Particulars	Description
Capacity Offered	Min: 50 MW; Max. 400 MW
Business Model & PPA tenure	BOO & 25 years
Counter Party/	SECI
Buying Utility	NDMC (200 MW) & DNH (200 MW)
Project Location	Generation may be co-located/ different locations. ESS has to be co-located with at-least one of the generation sources
ESS Capacity	RPD allowed to resize ESS until 3 years after COD (flexible to choose type)
Injection Point	Single or Multiple(s) by separate injection at Pooling point & having separate control
CUF	atleast 80% (annual) & 70% (monthly) Committed Annual energy: 100%
Technology & Interconnection Point	Technology Agnostic Interconnection at 220 kV or above
Developer Scope	Land, Connectivity & LTA
Tariff	1 st year tariff with 3% escalation Y-o-Y till 15 th year & subsequently fixed thereafter

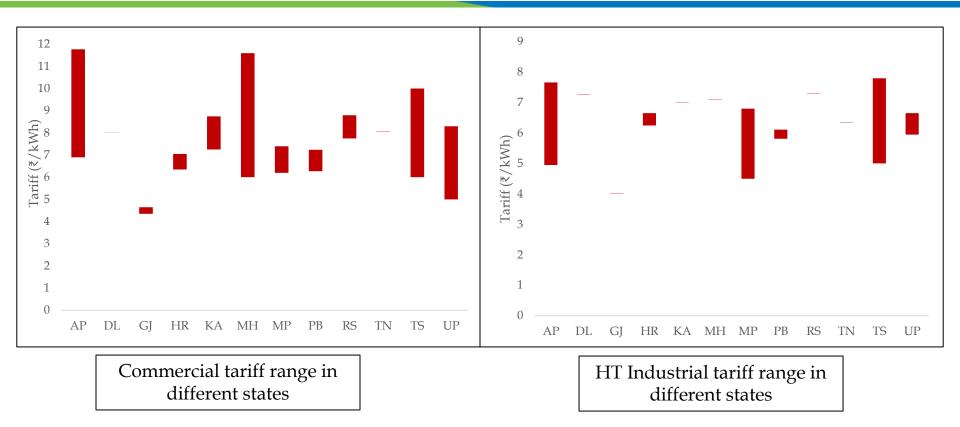
Particulars	Description		
Penalty Structure	Penalty for Monthly & Annual Shortfall		
Annual Shortfall Criteria	>77.5% to <80% CUF	<77.5% CUF	
Penalty (Annual)	2* PPA Tariff (Energy Terms)	2*PPA Tariff + Tariff Escalation removed in the succeeding year (upto 15/16 th year)	
Monthly Shortfall Criteria	> 67.5% and < 70% CUF	<67.5% CUF for > 2 months	
Penalty (Monthly) Calculated Annually	PPA Tariff /month * no of months with shortfall	PPA Tariff + Tariff Escalation removed in the succeeding year (upto 15/16 th year)	
Excess Generation	Excess Power allowed to be sold in Open Market – Priority to PPA requirement		
Grid Unavailability (Compensation to RE developer)	 > 4hrs: Gen Loss = [(Avg gen/hr during the billing month) × (no of hrs of grid unavailability in particular billing month)] Backdown: Gen Compensation = 100% x [Scheduled energy × (no 		
	of backdown hours during the month)] x PPA tariff		

S + S Plant connected at Distribution

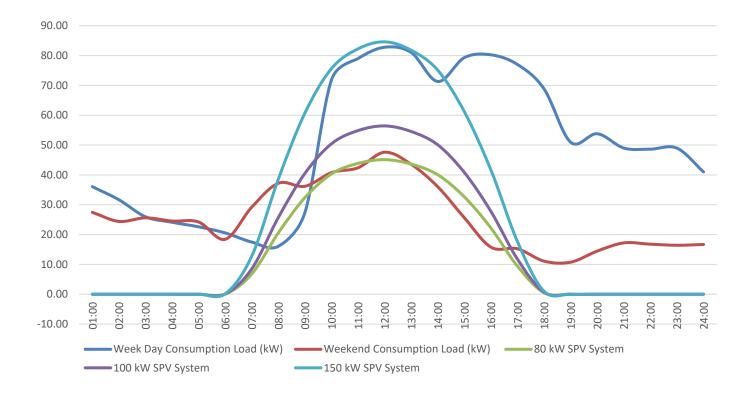
Cost of Generation – Decentralised Solar Plant

- Telangana
 - Telangana has opted for a distributed solar power generation program. Tenders were issued for solar power plants of capacities in the range of 50 MW to 200 MW to be set up in a distributed manner.
 - Out of 3,630 MW of solar installation about 1,543 MW of the total solar power capacity in Telangana is on account of distributed solar projects.
- Maharashtra
 - Decentralised solar plants of 300kW to 10MW capacity on vacant, un-used land near DISCOM substation.
 - Power from these plants is being fed to agriculture feeders, which is greatly benefitting both farmers and DISCOMs :
 - > Quality and reliable day time electricity to farmers;
 - Savings on the Transmission network cost, reduced T&D losses for DISCOM
 - Under 'Mukyamantri Sour Krushi Vahini Yojana' in Maharashtra, EESL has signed 25 years PPA with MSEDCL for 500 MW decentralised solar power.
 - MERC vide order dated May 21, 2020 has approved MSEDCL's proposal of procurement of 100 MW solar power at tariff of INR 3.11 per unit for 25 years from EESL.
- Integration of storage would provide several benefits to distribution companies.


Benefits of Solar Plus Storage to Discom


Deferment of Infrastructure investment	• BESS optimally sized to offer peak power support can help defer infrastructure investment by extending the life of transmission and distribution equipment due to reduced loading.
Reduction of distribution losses	• By reducing power flow on the distribution network during peak period, the overall technical losses of the utility are reduced.
Support to DRE	• Battery energy storage helps balance the fluctuations in supply resulting from the variability of renewable energy generation sources in the network.
Voltage Support	• BESS can help maintain a flat voltage profile of the network by controlling the active power flow especially the high voltage during peak generation hours of solar PV by absorbing the excess generation
Reduction of UI penalties	• The UI penalties resulting from excess or shortfall of scheduled power can be reduced or avoided with the help battery storage system by absorbing or supplying the difference in power
Reliability Improvement	•By mitigating peak demand shortages, outages resulting from load shedding can be minimized thus improving the reliability of service of the utility.

Solar Rooftop with Battery & attached Value Streams



Commercial and Industrial Tariff range

BESS at consumer level needs Load Curve Analysis

💓 Idam

Comparative Analysis of Business Models

Benefits	Large Generation	Distribution connected	Consumer Projects	Remarks
Lower CoG	~	×	×	Centralised plants are cheaper by 15-20% (only). Modular nature of technology is making 'economies of scale' argument less relevant.
Network Investment	×	~	~	Huge investment in transmission required for centralised plants. Decreasing utilisation of transmission assets with increasing VRE.
T&D loss reduction	×	~	~	Distributed sources are deployed near the load centre. This reduces the losses significantly.
Better Frequency	~	~		S + S makes project dispatchable thereby helping better management of frequency
Improves voltage & PF	×	~	~	As generating source and load are nearby, this will improve voltage profile and Power Factor
Reduction in Outages	×	~	~	Smart deployment of decentralised projects could help in reducing outages due to overloading of distribution n/w.
Capex Deferral	×	~	~	Decentralise sources deployed with Battery storage will defer Capital Investment of DISCOMs.
Distr network design	~	×	×	Distributed generation would require change in distribution network planning and operations philosophy.

Thank You

Contact:

Balawant Joshi+91 98214 21630Ajit Pandit+91 98211 08222

Email:

contact@idaminfra.com

Mumbai

801, Crystal Plaza, 158, CST Road, Kalina, Santacruz (E), Mumbai — 400 098 Phone: +91 22 4057 0200

Delhi

A-31, Second Floor, Lajpat Nagar II, Near Lajpat Metro Station, New Delhi — 110 024 Phone: +91 11 4943 4000

Kolkata

Globsyn Crystal, XI – 11 & 12, 1st Floor, Block – EP, Sector V, Salt Lake Electronics Complex, Kolkata – 700 091 Phone: +91 33 4604 8993

Hyderabad

House No. 3-51, Flat No. 201, Abhishek Towers, Balanagar, Hyderabad — 500 042 Phone: +91 91369 20664