

Sectoral Challenges and Opportunities for CCUS in Power Sector

By Ujjwal Kanti Bhattacharya, Director (Projects), NTPC Ltd.

Content

- Analyzing Energy & Economy Scenario
- Pathways for decarbonization to Net Zero for Power (Thermal) Sector
- Sectoral Challenges & Opportunities for CCUS in Power Sector
- Overcoming the Challenges
 - Decade long R&D in CO2 Capture
 - Conceive, designed, engineered CO2 to Methanol R&DD Plant at NTPC Vindhyachal

Going Forward

- Provision for Scale up in new Coal based Plants
- Expanding CCU Product base
- CCU to CCUS
- Fast Forwarding the transition

ANALYZING ENERGY & ECONOMY SCENARIO

D::

India's Commitment towards Climate Action Plan

- India's Commitment in COP 26 in Glasgow
 - Progressive decarbonization to reach net zero by 2070
- NDC setting quantifiable targets for Climate Action Plan till 2030
 - Reduce carbon intensity of our GDP by 45% wrt 2005 level.
 - $\sim 50 \%$ of installed electricity capacity from non fossil fuel sources
- COP27- Sector specific action plan

- Decarbonize Power, transport and steel, Scale up H2 technologies
- Accelerate the shift to sustainable agriculture

E onstitut

Source: Ember's Yearly Electricity Data; Ember's European Electricity Review; Energy Institute Statistical Review of World Energy OurWorldInData.org/energy • CC BY

Some Observations:

- Generation increases post covid for all economies
- Fossil fuel generation supported the economic recovery
- In most economies the share of fossil fuel electricity decreased as renewable increased
- In absolute terms, fossil fuel generation increased
- This trend will continue till affordable storage becomes a reality

CO2 Emission & GDP trend in Selected Economies

Observations

- GDP increasing
- Fossil fuel consumption increasing
- So is CO2 emission

Strategy for decoupling of economic growth from GHG emission is required

Pathways for Decarbonization of fossil generation becomes important

PATHWAYS FOR DECARBONIZATION TO NET ZERO FOR POWER SECTOR

Pathways for decarbonization for Net Zero in Power Sector

	Green	CCUS:	}	90-9	95% CO2 R	eduction	Sulk CO2 Reduction Under
e Coal er Plant	CO2 capt to chemica	ure & conve al/fuel	rt } 20-2 } Redu	25% uction	CO2 intensity 0.75 to 0.55 k	from g/kwh	
Blue	Coal Replacement by Biomass	} 20-25 % } Reduc	% CO2	CO2 inte 0.9 to 0.	ensity from .75 kg/kwh		
Advance USC/AUS	Technologies } 1 C }	0-1 <i>5</i> % CO2 Reduction	ating 5	ercially	ntal CO2 ction crossed stage		
Efficiency impro in existing	vement } 08-10 % CO } Reduction	2	Oper	Comme	Incremer Redu Already this s		

D::

एनरापीर्स

C

Developn

Technological Innovation

SECTORAL CHALLENGES & OPPURTUNITIES FOR CCUS

D::

Sectoral Challenges & Opportunities for CCUS

For Power Sector: CCUS A transition from Utility to Chemical/Process domain

Challenges

- CCU/S Technologies: Availability/Cost
- CCU: Production and market are apart
- CCUS: Sources & Sinks are distant
- Space constraint in power plant after FGD
- Safety Standards and Guidelines
- Utility to Chemical: Matching competencies
- Financing the transition
- Policy initiatives

Opportunities

- Indigenous R&D-Innovation & IPR
- Skill Set Enhancement
- Scale up/Demonstration: Signal to market
- New entity for aggregating demand/supply
- Hub/Cluster model
- Business model for market creation/sustenance
- Policy Changes
 - Increasing Land allocation
 - Allow change in land use
 - Introduce Carbon Taxation/Incentive

Overcoming the Challenges 15 years of R&D in CO2 Capture by NTPC

2004-2017:

- Aim: Development and evaluated of different CO2 Capture Technologies
- Methodology: Industry-R&D Collaborative approach
- Results: Engineering input for 10 TPD CO2 to Methanol R&DD Plant at NTPC Vindhyachal

PSA BASED CO2 CAPTURE

Micro-algal CO2 CAPTURE

Overcoming the Challenges

Conceive, design, engineered, set up of 10 TPD CO2 to Methanol (CTM) Plant

10 TPD CO2 to Methanol (CTM)

Converting Challenges to Opportunities

- In house engineering and integration
- Competency building
- Developed partners for execution
- Competitive bidding
- Discovered CAPEX-Cost competitive
- CTM R&DD Plant:

D::

- Skill enhancement Centre
- A set up for further R&D/experimentation
- Planned- CO2 liquefaction/food grade

1997

H2 interconnection with main plant

ή¶\$

CO2 to Methanol (CTM)-Project at a Glance

+ + * *

1	CO2 Block	2 Green H2 Block	3	Green Methanol Block 3(A) 3(B)		
Package	20 TPD CO ₂ Capture Plant	2 TPD H ₂ Generation Plant		Technology Package: Reactor, Catalyst, Technology	EPC Package: 10 TPD Methanol	
Technology	Solvent Absorption	Proton Exchange Membrane		Hetero Catalytic Hydrogenation	Based on Engineering of Technology Package	
Status	Awarded (March'21) & Commisioned	Awarded (July'21) and Under Execution		BDEP* Awarded(Sept'21) Engineering completed	Awarded on 24.02.2023	
Price	14.14 Cr	49.5 Cr		3.64 Cr	~58 Cr	
Contractor	Green Power, India + Carbon Clean Solutions, UK	Technip, India + Plug Power, US		Toyo Engineering(India+ Japan)	Jakson India	
Completion	Commissioned on 15.08.2022	Commissioning by 3rd Qrt 23-24	E	Based on PDEP in-house Engineering done by Mar 22	Q4 FY 23-24	

10 TPD CO2 to Methanol (CTM)

20 TPD CO2 Capture Plant Running 2 TPD PEM based H2 Electrolyser Planned Commissioning 3rd FY 2023-24 Presently largest PEM Electrolyser in India

10 TPD Methanol Synthesis Planned Commissioning 3rd Qrt FY 2023-24

GOING FORWARD

Scale up Expanding CCU product base CCU to CCUS

D::

Going Forward

Expanding the Product base from CO2

- Pilot Project for CO2 to Ethanol
- Pilot Project for CO2/N2 from FG to Green Ammonia/Urea
- Evaluating Non H2 based Product using CO2

Keeping Provision for scale up in new Plants

- FGD implementation is going on in all NTPC Plants
- All existing plants will be ready for CO2 Capture
- Provision for Space & Utility in all upcoming coal-based plant for 20% CO2 Capture
- Scale up data from 10 TPD CTM shall be used

CCU to CCUS

- CCU may not be sufficient for decoupling
- NETRA just commissioned a study for CO2 Storage
- Efforts to understand geology, storage , detection etc

FAST FORWARDING THE TRANSITION

D::

3

Fast Forwarding the transition to CCUS

- Technology: Collaborative approach for competency matching and fast transition
- R&D Demonstration in CCU & CCUs:
 - Generating data for scale-up, policy formulation, standards, confidence building, corrective measures
- Development of Clear, balanced legal framework
 - Utility Organization will now involve in Chemical production and Supply
 - Conversion of Land Use: Producing Chemical product in Power/Metal/cement industries
 - Taxation of new product from CO2 utilization from Power/Metal/cement etc industries
- System/Organization: System for Infrastructure, Controller, Aggregator, Standards, Monitoring
- Funding for new projects as Market is not developed
 - Funding for new projects, grant, project/viability funding
- Creating/Developing market for green products
 - Creating and supporting market for green product
 - Tax Relief
 - Carbon tax/Carbon incentive

Thank You

