

THE FUTURE FOR BULK POWDERS & FINE MATERIAL DRYING

Up to 75% less energy & CO₂ emissions

Richard Atkinson, VP Americas

Kinetic Drying is a new, energy-efficient drying method. It is ideal for drying materials that can be

pneumatically conveyed.

Limestone

Sands

Mica Flake

Waste Coal

Natural Pozzolans

Pulverised Fuel Ash (PFA)

Brewers' Grains

Crushed Basalt

X Highly energy intensive

* "Cooks" material at up to 400°C to vaporise moisture (+dwell time)

X Generates significant levels of CO2 emissions

The Coomfech Solution

- A Material is fed into the system
- **B** Into a flow of warm air $(85^{\circ}C)$
- C Managed turbulent air is injected, physically stripping moisture from the particles of material.
- D The removed moisture is carried off as humidity, diverted via cyclone at the end of the process.

SINGLE MODULE 50 - 100,000* MT PER ANNUM

6 - 12* MT PER HOUR

Flexible, Modular, Scalable & Cost Effective

COMPARISON OF FLUIDISED BED, ROTARY DRUM AND KINETIC DRYING TECHNOLOGIES

'Just-warm-enough' air holds moisture as vapour, avoids re-condensing

- High-volume, low-temperature treatment air
- Just above dew point to prevent water re-condensing
- Moist air and dry materials separated at end of process

KINETIC DRYING VS THERMAL DRYING

Customer Drying Trial	Thermal Drying Energy Consumption	Kinetic Dryer Energy Consumption
Harvested fly ash, 15% to 0.8% moisture India Cementitious applications	244 kWh/mt	60 kWh/mt -75%
Coarse angular sand, 8% to 0.1% UK Coarse Angular Sand	120 kWh/mt	29 kWh/mt -75%
Ground blast furnace slag, 8% to <0.5% <i>European top three GBFS suppliers</i>	120 kWh/mt	34.1 kWh/mt -71%
Crushed limestone, 3% to 0.2% <i>Major UK quarrying business</i> <i>Construction, industrial and consumer</i> <i>applications</i>	70 kWh/mt	29 kWh/mt -58%

PARTICLE SIZE DISTRIBUTION IMPROVEMENT

Coomtech Kinetic Dryer breaks up agglomerates and drives PSD to the finer end, to the extent that can be seen on these trials – using GBFS from India.

PULVERISED FUEL ASH PROJECT - UK

Project:

To establish a low energy, low emission and cost-effective method to dry stockpiled fly ash for reuse in the cement industry.

Value:

Energy saving: Projected at 103 kWh/t (75%) Initial plant install in 2024 3 further production plants scheduled Ca. 300k mtpa

Customer:	Hive Energy
Partner:	Aggregate Industries
	(Holcim UK)
Offtake:	Holcim (world's largest cement
	company)

HYDROGEN PROJECT - AUSTRALIA

Project:

Drying lignite for use in hydrogen gasification program for Japan.

Value:

Energy saving: Projected at 91 kWh/t (75%) Pilot project with Australian Government grant. Production plant would be multi-million mtpa.

Partners:	Victoria State Government
	ACE. Locally commissioned
	engineering company
Offtake:	Hydrogen Energy Supply
	Chain (HESC)

INNOVANDI CHALLENGE – GLOBAL CEMENT & CONCRETE ASSOCIATION

Project:

Evaluation of Kinetic Drying for consortium of GCCA members. Production trials of a range of materials for global cement businesses.

Value:

Indian participants Ultratech and JSW trialled fly ash and GBFS.

Savings of 75% relative to thermal drying achieved on both materials.

Partners: JSW cement Ultratech cement CRH Buzzi Unicem

Mois Coomtech?

PRODUCTION PLANT ADLINGTON, UK

"AT HOLCIM, WE ARE CONTINUOUSLY WORKING TO IMPLEMENT GREENER OPERATIONS FOR A NET-ZERO FUTURE, AND TO INCREASE THE USE OF RECYCLED MATERIALS IN OUR PRODUCTS TO DRIVE CIRCULAR CONSTRUCTION.

COOMTECH'S LOW-EMISSION DRYING TECHNOLOGY HELPS US MEET BOTH THESE GOALS. I LOOK FORWARD TO WORKING WITH THEM AS A KEY PARTNER IN OUR JOURNEY TO DECARBONIZE BUILDING."

Edelio Bermejo, Head of Global R&D

Thankyou

Richard Atkinson, VP Americas ratkinson@coomtech.com +1 647 5812 128

Stage 2: Evaluate

Stage 3: Trial (POA)

Stage 4: Proposal