Enabling Carbon Minimal World

Network Startight Press

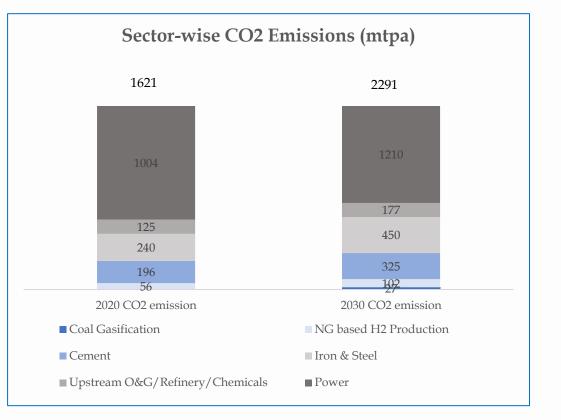
Carbon Capture, Utilization and Storage- Indian Context By Balawant Joshi, MD, Idam Infra

Idam Infrastructure Advisory Pvt. Ltd.

Imperatives for CCUS in India

500 GW RE installed capacity by 2030 50% of energy requirement
from non-fossil fuel sources by 2030 CO2 emissions reduction of 1 Billion tonnes (from now) by 2030

Economy-wide CO2 intensity reduction by 45% (from 2005) by 2030


Net zero emissions by 2070

- Deployment of zero carbon and negative carbon technologies is essential to achieve carbon neutrality
- Even with 500 GW of renewable capacity by 2030, the need of fossil fuel for a stable baseload power supply persists
- With fossil fuels continuing to play an important role, CCUS technologies become essential to achieve net-zero ambition
- Apart from reducing emissions, CCUS technologies also support in production of clean products, providing energy security, enabling sunrise sector such as coal gasification
- Therefore, CCUS is essential in driving sustainable economic growth while addressing the challenges of carbon emissions and climate change.

CO2 Emissions from Major Industries in India

- India's power and industrial sectors contributed around 1,600 mtpa of CO2 emission (around 60%) out of 2,600 mtpa in 2020
- The remaining 40% CO2 emissions are contributed by distributed point emissions sources like agriculture, transport, and buildings
- Emissions from power and industrial sectors are expected to increase to nearly 2,300 mtpa by the year 2030

Source: CCUS Policy Framework and its Development Mechanism in India by Niti Aayog; Nov 2022

Source-sink matching and CCS hub-clusters in India

- 244 large point sources (LPSs) and 7 sedimentary basins (3 offshore and 4 onshore) considered for the study.
- For offshore basins, LPSs considered within 300 km radius, while LPSs within 200 km for onshore ones.
- 32%, 43% and 25% LPSs fall within 100, 200 and 300 km respectively from the Euclidean center.
- Highest emission in cluster 3 (Eastern India coal belt), lowest emission in cluster 4 (Assam basin)
- Maximum number of LPSs in cluster 5 (Cambay) and minimum in Cluster 1 (Rajasthan)

Sources :

Vikram Vishal et al., 2021, Int J. Greenhouse Gas Control, Vol. 111, p.103458. *Vikram Vishal et al.*, 2023, Geological Society of London Sp. Pub., Vol. 528, p. 209 - 225

CCUS Projects implemented in India

Sr. No.	Projects	Capacity	Start of	Utilization of CO2
SI. INO.	riojecis			Othization of CO2
		(TPD CO2)	Operation	
1	Indo Gulf Corporation Ltd,	150	1988	Manufacturing of urea
	Jagdishpur			
2	IIFCO, Aonla, UP	450	2006	Manufacturing of urea
3	IFFCO Phulpur (UP)	450	2006	Manufacturing of urea
4	Nagarjuna Fertiliser and Chemical	450	2009	Manufacturing of urea
	Ltd. Kakinada (AP)			
5	National Fertiliser Ltd., Vijayapur	450	2012	Manufacturing of urea
	(MP)			
6	Tuticorin Alkali Chemicals and	~200	2016	• For converting into soda ash (sodium carbonate) – an ingredient used in household
	Fertilizers Limited (TFL)			products, glass manufacturing, and paper production
7	Tata Steel Jamshedpur Works	5	2021	Reuse on site to promote circular carbon economy
8	BHEL Hyderabad	1.4	2021	• Producing methanol with purity of more than 99 percent from high-ash Indian coal
9	Jindal Steel & Power Angul Plant	2000	2022	• Using CO2 through bio reactors to produce an algae "Spirulina" (Dietary supplement)
				Soda Ash Pilot project
				Methanol through Catalytic hydrogenation route; and Bio-Ethanol Pilot Project
10	NTPC Vindhyachal Super	20	2022	Production of Methanol
	Thermal Power Station			
11	Indian Oil Corporation Koyali	~1,500	Announced*	• For enhanced oil recovery (EOR)
	refinery			• Liquefied and purified CO2 to food and beverage sector industry
12	Dalmia Cement (Bharat) Limited	~1500	Announced**	Production of Urea
	· /			

*Techno-commercial Feasibility Study completed; funded by USTDA ** Techno-commercial Feasibility Study completed; funded by ADB

Way forward for CCUS in India

- CCUS technologies faces various challenges such as high capital cost and financial unviability.
- Despite these challenges, the successful deployment of CCUS has taken place across the world, due to government support and strong policy framework
 - Capital support such as EU Innovation fund (€40 billion) for low carbon technologies in Europe;
 - UK CCUS infrastructure fund (£1 billion) support CCUS projects in UK
 - Operation subsidies and tax credits such as Sequestration Tax Credit in USA
 - Development of roadmap and policies such as China CCUS Roadmap 2015
- GoI has been providing incentives/support to other technologies such as Green Hydrogen, Electrolyzer manufacturing and EVs
- Stronger policies and market certainty would provide necessary financing for deployment CCUS supply chains & commercial infrastructure
- In this roundtable, we hope to discuss the challenges faced by CCUS sector in India and identify potential solutions for CCUS Roadmap for India.

Thank you for your kind attention